3.113 \(\int \frac{\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^4} \, dx\)

Optimal. Leaf size=138 \[ \frac{2 (3 A+4 B) \tan (c+d x)}{105 d \left (a^4 \sec (c+d x)+a^4\right )}+\frac{2 (3 A+4 B) \tan (c+d x)}{105 d \left (a^2 \sec (c+d x)+a^2\right )^2}+\frac{(3 A+4 B) \tan (c+d x)}{35 a d (a \sec (c+d x)+a)^3}+\frac{(A-B) \tan (c+d x)}{7 d (a \sec (c+d x)+a)^4} \]

[Out]

((A - B)*Tan[c + d*x])/(7*d*(a + a*Sec[c + d*x])^4) + ((3*A + 4*B)*Tan[c + d*x])/(35*a*d*(a + a*Sec[c + d*x])^
3) + (2*(3*A + 4*B)*Tan[c + d*x])/(105*d*(a^2 + a^2*Sec[c + d*x])^2) + (2*(3*A + 4*B)*Tan[c + d*x])/(105*d*(a^
4 + a^4*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.150658, antiderivative size = 138, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.103, Rules used = {4000, 3796, 3794} \[ \frac{2 (3 A+4 B) \tan (c+d x)}{105 d \left (a^4 \sec (c+d x)+a^4\right )}+\frac{2 (3 A+4 B) \tan (c+d x)}{105 d \left (a^2 \sec (c+d x)+a^2\right )^2}+\frac{(3 A+4 B) \tan (c+d x)}{35 a d (a \sec (c+d x)+a)^3}+\frac{(A-B) \tan (c+d x)}{7 d (a \sec (c+d x)+a)^4} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^4,x]

[Out]

((A - B)*Tan[c + d*x])/(7*d*(a + a*Sec[c + d*x])^4) + ((3*A + 4*B)*Tan[c + d*x])/(35*a*d*(a + a*Sec[c + d*x])^
3) + (2*(3*A + 4*B)*Tan[c + d*x])/(105*d*(a^2 + a^2*Sec[c + d*x])^2) + (2*(3*A + 4*B)*Tan[c + d*x])/(105*d*(a^
4 + a^4*Sec[c + d*x]))

Rule 4000

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f}, x
] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]

Rule 3796

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(a
+ b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] + Dist[(m + 1)/(a*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^4} \, dx &=\frac{(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac{(3 A+4 B) \int \frac{\sec (c+d x)}{(a+a \sec (c+d x))^3} \, dx}{7 a}\\ &=\frac{(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac{(3 A+4 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac{(2 (3 A+4 B)) \int \frac{\sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{35 a^2}\\ &=\frac{(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac{(3 A+4 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac{2 (3 A+4 B) \tan (c+d x)}{105 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac{(2 (3 A+4 B)) \int \frac{\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{105 a^3}\\ &=\frac{(A-B) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}+\frac{(3 A+4 B) \tan (c+d x)}{35 a d (a+a \sec (c+d x))^3}+\frac{2 (3 A+4 B) \tan (c+d x)}{105 d \left (a^2+a^2 \sec (c+d x)\right )^2}+\frac{2 (3 A+4 B) \tan (c+d x)}{105 d \left (a^4+a^4 \sec (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.444291, size = 193, normalized size = 1.4 \[ \frac{\sec \left (\frac{c}{2}\right ) \cos \left (\frac{1}{2} (c+d x)\right ) \left (-35 (18 A+5 B) \sin \left (c+\frac{d x}{2}\right )+70 (9 A+4 B) \sin \left (\frac{d x}{2}\right )+441 A \sin \left (c+\frac{3 d x}{2}\right )-315 A \sin \left (2 c+\frac{3 d x}{2}\right )+147 A \sin \left (2 c+\frac{5 d x}{2}\right )-105 A \sin \left (3 c+\frac{5 d x}{2}\right )+36 A \sin \left (3 c+\frac{7 d x}{2}\right )+168 B \sin \left (c+\frac{3 d x}{2}\right )-105 B \sin \left (2 c+\frac{3 d x}{2}\right )+91 B \sin \left (2 c+\frac{5 d x}{2}\right )+13 B \sin \left (3 c+\frac{7 d x}{2}\right )\right )}{420 a^4 d (\cos (c+d x)+1)^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^4,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c/2]*(70*(9*A + 4*B)*Sin[(d*x)/2] - 35*(18*A + 5*B)*Sin[c + (d*x)/2] + 441*A*Sin[c + (3*
d*x)/2] + 168*B*Sin[c + (3*d*x)/2] - 315*A*Sin[2*c + (3*d*x)/2] - 105*B*Sin[2*c + (3*d*x)/2] + 147*A*Sin[2*c +
 (5*d*x)/2] + 91*B*Sin[2*c + (5*d*x)/2] - 105*A*Sin[3*c + (5*d*x)/2] + 36*A*Sin[3*c + (7*d*x)/2] + 13*B*Sin[3*
c + (7*d*x)/2]))/(420*a^4*d*(1 + Cos[c + d*x])^4)

________________________________________________________________________________________

Maple [A]  time = 0.059, size = 90, normalized size = 0.7 \begin{align*}{\frac{1}{8\,d{a}^{4}} \left ({\frac{-A+B}{7} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{7}}+{\frac{3\,A-B}{5} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}}+{\frac{-3\,A-B}{3} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}+A\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +B\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x)

[Out]

1/8/d/a^4*(1/7*(-A+B)*tan(1/2*d*x+1/2*c)^7+1/5*(3*A-B)*tan(1/2*d*x+1/2*c)^5+1/3*(-3*A-B)*tan(1/2*d*x+1/2*c)^3+
A*tan(1/2*d*x+1/2*c)+B*tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]  time = 1.00135, size = 236, normalized size = 1.71 \begin{align*} \frac{\frac{B{\left (\frac{105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac{21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac{15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}} + \frac{3 \, A{\left (\frac{35 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{35 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{21 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac{5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}\right )}}{a^{4}}}{840 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="maxima")

[Out]

1/840*(B*(105*sin(d*x + c)/(cos(d*x + c) + 1) - 35*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 21*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5 + 15*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 + 3*A*(35*sin(d*x + c)/(cos(d*x + c) + 1) - 35
*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 21*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 5*sin(d*x + c)^7/(cos(d*x + c)
 + 1)^7)/a^4)/d

________________________________________________________________________________________

Fricas [A]  time = 0.451195, size = 308, normalized size = 2.23 \begin{align*} \frac{{\left ({\left (36 \, A + 13 \, B\right )} \cos \left (d x + c\right )^{3} + 13 \,{\left (3 \, A + 4 \, B\right )} \cos \left (d x + c\right )^{2} + 8 \,{\left (3 \, A + 4 \, B\right )} \cos \left (d x + c\right ) + 6 \, A + 8 \, B\right )} \sin \left (d x + c\right )}{105 \,{\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="fricas")

[Out]

1/105*((36*A + 13*B)*cos(d*x + c)^3 + 13*(3*A + 4*B)*cos(d*x + c)^2 + 8*(3*A + 4*B)*cos(d*x + c) + 6*A + 8*B)*
sin(d*x + c)/(a^4*d*cos(d*x + c)^4 + 4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) +
a^4*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A \sec{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec{\left (c + d x \right )} + 1}\, dx + \int \frac{B \sec ^{2}{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec{\left (c + d x \right )} + 1}\, dx}{a^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**4,x)

[Out]

(Integral(A*sec(c + d*x)/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x) +
Integral(B*sec(c + d*x)**2/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + d*x)**2 + 4*sec(c + d*x) + 1), x))
/a**4

________________________________________________________________________________________

Giac [A]  time = 1.27616, size = 158, normalized size = 1.14 \begin{align*} -\frac{15 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 15 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 63 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 21 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 105 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 35 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 105 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 105 \, B \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{840 \, a^{4} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^4,x, algorithm="giac")

[Out]

-1/840*(15*A*tan(1/2*d*x + 1/2*c)^7 - 15*B*tan(1/2*d*x + 1/2*c)^7 - 63*A*tan(1/2*d*x + 1/2*c)^5 + 21*B*tan(1/2
*d*x + 1/2*c)^5 + 105*A*tan(1/2*d*x + 1/2*c)^3 + 35*B*tan(1/2*d*x + 1/2*c)^3 - 105*A*tan(1/2*d*x + 1/2*c) - 10
5*B*tan(1/2*d*x + 1/2*c))/(a^4*d)